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Abstract

In this paper, we propose a framework HAR to study the

hub and authority scores of objects, and the relevance scores

of relations in multi-relational data for query search. The

basic idea of our framework is to consider a random walk

in multi-relational data, and study in such random walk,

limiting probabilities of relations for relevance scores, and of

objects for hub scores and authority scores. The main con-

tribution of this paper is to (i) propose a framework (HAR)

that can compute the hub, authority and relevance scores by

solving limiting probabilities arising from multi-relational

data, and can incorporate input query vectors to handle

query-specific search; (ii) show existence and uniqueness of

such limiting probabilities so that they can be used for query

search effectively; and (iii) develop an iterative algorithm

to solve a set of tensor (multivariate polynomial) equations

to obtain such probabilities. Extensive experimental results

on TREC and DBLP data sets suggest that the proposed

method is very effective in obtaining relevant results to

the querying inputs. In the comparison, we find that the

performance of HAR is better than those of HITS, SALSA

and TOPHITS.

1 Introduction

PageRank [18] and HITS [11] are two significant link
analysis algorithms for determining the importance of
objects in a graph. The PageRank scores are given
by the entries of the principal eigenvector of a Markov
matrix of objects transition probabilities across the
entire graph. The PageRank score depends only on the
topology of the graph and do not depend on the query.
Topic/query-sensitive PageRank is also proposed and
developed in [9]. On the other hand, HITS [11] first
evaluates a focused subgraph, computes the principal
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singular vectors of the adjacency matrix of the focused
subgraph, and then obtain authorities and hubs scores
for answering the query. The HITS score is query-
specific in that it computes the authority scores of the
objects after a focused subgraph is used. In these two
approaches, a single relation type is focused and studied.

There are many information retrieval and data min-
ing applications where multiple relation types are in-
volved. In such applications, objects have interactions
with the others based on different relations. For exam-
ple, researchers (or papers) cite the other researchers (or
the other papers) based on different concepts/keywords
[17], proteins interact with the other proteins under dif-
ferent conditions, webpages link to the other webpages
via different semantic meanings [12], resource descrip-
tion format (RDF) resources connect to the other RDF
resources through different RDF predicates [6]. We re-
fer to the data of this type as multi-relational data. One
natural way to represent the multi-relational data is us-
ing tensors, also known as multi-dimensional arrays. In
Figure 1, we show an example of multi-relational data
with five objects and three relations and its correspond-
ing tensor representation. In the figure, an 5 × 5 × 3
three-dimensional array is used, where (i, j, k) entry is
nonzero if the jth object connects to the ith object with
the kth relation.
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Figure 1: (a) An example of a multi-relational data in a
graph representation and (b) the corresponding tensor
representation.

In this paper, we propose a framework to study the
hub and authority scores of objects in multi-relational
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data for query search. Besides hub and authority
scores for each object, we assign a relevance score
for each relation to indicate its importance in multi-
relational data. In our proposal, these three scores
have the following mutually-reinforcing relationships.
(i) An object that points to many objects with high
authority scores through relations of high relevance
scores, receives a high hub score. (ii) An object
that is pointed by many objects with high hub scores
through relations of high relevance scores, receives a
high authority score. (iii) A relation that is connected in
between objects with high hub scores and high authority
scores, receives a high relevance score.

Our idea is to compute hub and authority scores
of objects and relevance scores of relations by consid-
ering a random walk in a multi-relational data/tensor,
and studying the limiting probabilities arriving objects
as hubs or as authorities, and using relations respec-
tively. More specifically, we construct transition proba-
bility tensors for objects as hubs or as authorities and
for relations, and then set up a set of tensor (multi-
variate polynomial) equations following the mutually-
reinforcing relationship among hubs, authorities and re-
lations described in the above mechanisms (i), (ii) and
(iii). We obtain hub and authority scores for objects
and relevance scores for relations by solving tensor equa-
tions. In order to handle query-specific search, we incor-
porate an input hub, authority or relation vector into
the tensor equations to answer such query.

The main contribution of this paper can be sum-
marized as follows. (i) We propose a framework (HAR)
that can compute the hub, authority and relevance
scores by solving limiting probabilities arising from
multi-relational data, and can incorporate input query
vectors to handle query-specific search. (ii) We show
existence and uniqueness of such limiting probabilities
so that they can be used for query search effectively.
(iii) We develop an iterative algorithm to solve a set
of tensor (multivariate polynomial) equations to obtain
such probabilities. Extensive experimental results on
TREC and DBLP data sets suggest that the proposed
method is very effective in obtaining relevant results to
the querying inputs. In the comparison, we find that
the performance of HAR is better than those of HITS,
SALSA and TOPHITS.

The rest of the paper is organized as follows. In
Section 2, we review some related work. In Section 3, we
describe notations in this paper and some preliminary
knowledge. In Section 4, we present the proposed
framework. In Section 5, we analyze the proposed
methodology. In Section 6, we show and discuss the
experimental results for real-world data sets. In Section
7, we give some concluding remarks and mention some

future research work.

2 Related Work

Improvement of HITS can be found by considering prob-
abilistic latent sematic indexing [3], using a weighted in-
degree analysis [15] and utilizing document cluster infor-
mation and language models [14]. The main challenge
of these approaches is required to set suitable weights
in the edges in order to obtain effective ranking results.
However, the weights are not known in general. The
novelty of this paper is to provide a framework to de-
termine the weights automatically. In [5], a co-HITS al-
gorithm was proposed to incorporate the bipartite graph
with the content information from both sides as well as
the constraints of relevance. The score propagation is
the mutual reinforcement to boost co-linked entities on
the graph only. We see from (4.10) in Section 4 that
our method involves mutual reinforcement among all
the hubs, authorities and relations.

In the literature, tensor factorization is a general-
ized approach for analyzing multi-way data [22, 16, 23,
24]. The query search problem in multi-relational data
has been also studied recently. The main idea is to ap-
proximate a tensor by a low-rank decomposition and
make use of the decomposition vectors to handle query
search. Sun et al. [25] applied a 3-way Tucker decompo-
sition [27] to the analysis of user, query-term and web-
page data in order to personalize web search. Rendle el
al. proposed a tensor factorization model to exploit the
ternary relationships in tagging data and personalize the
tag recommender [19]. Kolda et al. [13, 12] proposed
TOPHITS by adding a third dimension to form an adja-
cency tensor that incorporates anchor text information,
and employ a Three-way Parallel Factors (PARAFAC)
decomposition [2, 8] to compute the singular vectors for
query processing. Acar et al. [1] used various tensor de-
compositions of user, keyword and time data to separate
different streams of conservations in chatroom data. In
these methods, we need to select the number of decom-
positions (low-rank approximation) in the tensor fac-
torization. The number of decompositions may not be
known in advance. On the other hand, the computation
of tensor factorization may not be unique as there are
several numerical methods (e.g., the alternating least
squares procedure) used to compute such factorization
and the factorization results depend on the initial guess.
There is no detailed algorithmic and mathematical anal-
ysis for the convergence of the method. Also the com-
putational cost may be expensive for very large tensors
[4].

Different from these methods, we compute limiting
probabilities of tensors for hub and authority scores of
objects and relevance scores of relations to handle the
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query search problem. We will show that such proba-
bilities can be unique and computed very efficiently. In
[17], we have developed a MultiRank algorithm for co-
ranking both objects and relations together in a multi-
relational data by considering undirected edges in mul-
tiple relations only. In this paper, we consider directed
edges in multiple relations, and analyze both hub and
authority scores in the new setting. Recently, Harth and
Kinsella [7] used the power method to compute scor-
ing vectors for subjects, objects, predicates and context
relationships in semantic web in a fourth order tensor.
However, the mathematical analysis of such scoring vec-
tors is not given. We remark that we can extend our
framework to cover a higher-order tensor e.g., subject-
object-predicate-context relationships in semantic web,
and study the theoretical properties of scoring vectors
as limiting probabilities, see the concluding remarks in
Section 7.

3 Preliminary

In this section, we describe notations and present some
preliminary knowledge on tensors. As we analyze ob-
jects under multiple relations and also consider interac-
tion between relations based on objects, we make use of
rectangular tensors to represent them.

Let R be the real field. We call T = (ti1,i2,j1)
where ti1,i2,j1 ∈ R, for ik = 1, · · · ,m, k = 1, 2 and
j1 = 1, · · · , n, a real (2, 1)th order (m× n)-dimensional
rectangular tensor. In this setting, we refer (i1, i2) to
be the indices for objects and j1 to be the indices for
relations. For instance, five objects (m = 5) and three
relations (n = 3) are used in the example in Figure
1. When there is a link from the i1th object to the i2th
object when the j1th relation is used, we set ti1,i2,j1 = 1,
otherwise ti1,i2,j1 = 0. In addition, T is called non-
negative if ti1,i2,j1 ≥ 0.

Let u, v be vectors of length m and w be a vector
of length n. Let [T uw]1 and [T uw]2 be vectors in Rm

such that

([T uw]1)i1 =
m∑

i2=1

n∑

j1=1

ti1,i2,j1ui2wj1 , i1 = 1, 2, · · · ,m,

or

([T uw]2)i2 =
m∑

i1=1

n∑

j1=1

ti1,i2,j1ui1wj1 , i2 = 1, 2, · · · ,m.

Similarly, [T uv]3 is a vector in Rn such that

([T uv]3)j1 =
m∑

i1=1

m∑

i2=1

ti1,i2,j1ui1vi2 , j1 = 1, 2, · · · , n.

As we consider a random walk in a nonnegative
rectangular tensor arising from multi-relational data,

and study the likelihood that we will arrive at any
particular object as a hub or as an authority, and use
at any particular relation, we construct three transition
probability tensors H = (hi1,i2,j1), A = (ai1,i2,j1) and
R = (ri1,i2,j1) with respect to hubs, authorities and
relations by normalizing the entry of T as follows:

hi1,i2,j1 =
ti1,i2,j1

m∑

i1=1

ti1,i2,j1

, i1 = 1, 2, · · · ,m,

ai1,i2,j1 =
ti1,i2,j1

m∑

i2=1

ti1,i2,j1

, i2 = 1, 2, · · · ,m,

ri1,i2,j1 =
ti1,i2,j1

n∑

j1=1

ti1,i2,j1

, j1 = 1, 2, · · · , n.

These numbers gives the estimates of the following
conditional probabilities:

hi1,i2,j1 = Prob[Xt = i1|Yt = i2, Zt = j1]
ai1,i2,j1 = Prob[Yt = i2|Xt = i1, Zt = j1]
ri1,i2,j1 = Prob[Zt = j1|Yt = i2, Xt = i1]

where Xt, Yt and Zt are random variables referring
to visit at any particular object as a hub and as an
authority, and to use at any particular relation at the
time t, respectively. Here the time t refers to the time
step in the random walk. hi1,i2,j1 (or ai1,i2,j1) can be
interpreted as the probability of visiting the i1th (or
i2th) object as a hub (or as an authority) by given
that the i2th (or i1th) object as an authority (or as
a hub) is currently visited and the j1th relation is used,
and ri1,i2,j1 can be interpreted as the probability of
using the j1th relation given that the i2th object as an
authority is visited from the i1th object as a hub. We
remark that the construction of ai1,i2,j1 is related to the
transpose of hi1,i2,j1 . This is similar to the construction
of SALSA algorithm to incorporate the link structure
among objects for the role of hub and authority in the
single relation data [15].

We note that if ti1,i2,j1 is equal to 0 for all 1 ≤ i1 ≤
m, this is called the dangling node [18], and the values
of hi1,i2,j1 can be set to 1/m. The same construction
is for ai1,i2,j . Similarly, if ti1,i2,j1 is equal to 0 for all
1 ≤ j1 ≤ n, then the values of ri1,i2,j1 can be set to 1/n.
With the above construction, we have

0 ≤ hi1,i2,j1 ≤ 1, 0 ≤ ai1,i2,j1 ≤ 1, 0 ≤ ri1,i2,j1 ≤ 1,
m∑

i1=1

hi1,i2,j1 = 1,

m∑

i2=1

ai1,i2,j1 = 1,
n∑

j1=1

ri1,i2,j1 = 1.
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We callH, A andR transition probability tensors which
is similar to transition probability matrices in Markov
chain [21]. In addition, it is necessary for us to know the
connectivity among the objects and the relations within
a tensor.

Definition 3.1. A (2, 1)th order nonnegative rectan-
gular tensor T is called irreducible if (ti1,i2,j) (m-by-m
matrices) for j = 1, 2, · · · , n are irreducible. If T is not
irreducible, then we call T reducible.

When T is irreducible, any two objects in multi-
relational data can be connected via some relations.
As we would like to determine the importance of both
objects and relations simultaneously in multi-relational
data, irreducibility is a reasonable assumption that we
will use in the following discussion. It is clear that when
T is irreducible, the corresponding tensors H, A and R
are also irreducible.

4 The Proposed Framework

Given three transition probability tensors H, A and R,
we study the following conditional probabilities:

Prob[Xt = i1](4.1)

=
m∑

i2=1

n∑

j1=1

hi1,i2,j1 × Prob[Yt = i2, Zt = j1]

Prob[Yt = i2](4.2)

=
m∑

i1=1

n∑

j1=1

ai1,i2,j1 × Prob[Xt = i1, Zt = j1]

Prob[Zt = j1](4.3)

=
m∑

i1=1

m∑

i2=1

ri1,i2,j1 × Prob[Xt = i1, Yt = i2]

where Prob[Yt = i2, Zt = j1] is the joint probability
distribution of Yt and Zt, Prob[Xt = i1, Zt = j1]
is the joint probability distribution of Xt and Zt,
and Prob[Xt = i1, Yt = i2] is the joint probability
distribution of Xt and Yt. In our approach, we consider
the limiting probability distributions of objects as hubs
and authorities, and relations, i.e., we are interested in
hub and authority scores of objects

x̄ = [x̄1, x̄2, · · · , x̄m]T , ȳ = [ȳ1, ȳ2, · · · , ȳm]T

and relevance scores of relations given by

z̄ = [z̄1, z̄2, · · · , z̄n]T

respectively, with

x̄ik
= lim

t→∞
Prob[Xt = ik], ȳjk

= lim
t→∞

Prob[Yt = ik]

for 1 ≤ ik ≤ m, and

z̄jk
= lim

t→∞
Prob[Zt = jk]

for 1 ≤ jk ≤ n. In order to obtain x̄i1 , ȳi1 and z̄j1 , we
assume that the limiting joint probability distribution
can be approximated by the individual limiting product
distributions, i.e., the solutions are in tensor-product
forms:

lim
t→∞

Prob[Yt = i2, Zt = j1] = ȳi2 z̄j1(4.4)

lim
t→∞

Prob[Xt = i1, Zt = j1] = x̄i1 z̄j1(4.5)

lim
t→∞

Prob[Xt = i1, Yt = i2] = x̄i1 ȳi2(4.6)

The tensor-product form solution has been considered
in [7, 17]. Therefore, by making t goes to infinity, (4.1),
(4.2) and (4.3) becomes

x̄i1 =
m∑

i2=1

n∑

j1=1

hi1,i2,j1 ȳi2 z̄j1 , i1 = 1, 2, · · · ,m,(4.7)

ȳi2 =
m∑

i1=1

n∑

j1=1

ai1,i2,j1 x̄i2 z̄j1 , i2 = 1, 2, · · · ,m,(4.8)

z̄j1 =
m∑

i1=1

m∑

i2=1

ri1,i2,j1 x̄i1 ȳi2 , j1 = 1, 2, · · · , n.(4.9)

We see from (4.7), (4.8) and (4.9) that the hub (or
authority) score of an object is defined implicitly and
depends on the number and authority (or hub) metric of
all objects that have multiple relations to (or from) this
object, and also the relevance values of these multiple
relations. Similarly, the relevance score of a relation
is defined implicitly and depends on which the objects
to be linked and their hub and authority scores of these
objects. It is clear that an object that is linked with high
relevance score of relations from (or to) many objects
with high hub (or authority) scores, receives a high
authority (or hub) score itself. Also a relation that is
linked with objects with high hub and authority scores,
receives a high relevance score itself. It is interesting to
note from (4.7), (4.8) and (4.9) that under the tensor
operation, we solve the following tensor (multivariate
polynomial) equations:

(4.10) [Hȳz̄]1 = x̄, [Ax̄z̄]2 = ȳ, [Rx̄ȳ]3 = z̄,
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with

(4.11)
m∑

i1=1

x̄i1 = 1,
m∑

i2=1

ȳi2 = 1,
n∑

j1=1

z̄j1 = 1.

For simplicity, we will drop the bracket and the number
([·]1,[·]2 and [·]3) for the above tensor-product opera-
tions in the following discussion.

When we consider a single relation type, we can
set z̄ to be a vector l/n of all ones in (4.10), and
thus we obtain two matrix equations Hȳl/n = x̄ and
Ax̄l/n = ȳ. We remark that A can be viewed as the
transpose ofH. This is exactly the same as that we solve
for the singular vectors to get the hub and authority
scoring vectors in SALSA. As a summary, the proposed
framework HAR is a generalization of SALSA to deal
with multi-relational data.

4.1 Query Search for Objects and Relations To
deal with query processing, we need to compute hub
and authority scores of objects and relevance scores of
relations with respect to a query input. Motivated by
the idea of topic-sensitive PageRank [9] and random
walk with restart [26], we consider this issue by assigning
the desired limiting probability distributions towards a
query input. More specifically, we modify the tensor
equations in (4.10) as follows:

(1− α)Hȳz̄ + αo = x̄,

(1− β)Ax̄z̄ + βo = ȳ,(4.12)
(1− γ)Rx̄ȳ + γr = z̄,

with (4.11), where o and r are two assigned probability
distributions that are constructed from a query input.
Here (

∑m
i=1[o]i = 1 and

∑n
j=1[r]j = 1), and 0 ≤

α, β, γ < 1, are three parameters for controlling the
importance of the assigned probability distributions in
query input to the resulting hub and authority scores of
objects and the relevance scores of relations.

Given a query input, one simple way is to construct
o and r by using uniform distributions on the interesting
objects and relations respectively, or by normalizing
the weights of the interesting objects and relations
respectively. Note that a query input can be composed
of either objects or relations, or composed of both.
Moreover, if we would like to emphasize the objects
or relations satisfying some requirements in the query
search, we assign higher probabilities to these objects
or relations.

4.2 The Algorithm In this subsection, we present
an efficient iterative algorithm to solve the tensor equa-
tions in (4.12) to obtain x̄, ȳ and z̄ for the hub and
authority scores of objects and the relevance scores of

relations. The HAR algorithm is summarized in Algo-
rithm 1.

Algorithm 1 The HAR Algorithm
Input: Three tensors H, A and R, two initial prob-
ability distributions y0 and z0 with (

∑m
i=1[y0]i = 1

and
∑n

j=1[z0]j = 1), the assigned probability distribu-
tions of objects and/or relations o and r (

∑m
i=1[o]i = 1

and
∑n

j=1[r]j = 1), three weighting parameters 0 ≤
α, β, γ < 1, and the tolerance ε
Output: Three limiting probability distributions x̄
(hub scores), ȳ (authority scores) and z̄ (relevance val-
ues)
Procedure:
1: Set t = 1;
2: Compute xt = (1− α)Hyt−1zt−1 + αo;
3: Compute yt = (1− β)Axtzt−1 + βo;
4: Compute zt = (1− γ)Rxtyt + γr;
5: If ||xt−xt−1||+ ||yt−yt−1||+ ||zt−zt−1|| < ε, then

stop, otherwise set t = t + 1 and goto Step 2.

In Algorithm 1, the HAR computations require sev-
eral iterations, through the collection to adjust approx-
imate hub and authority scores of objects and relevance
scores of relations to more closely reflect their theoret-
ical true values (underlying limiting probability distri-
butions). The main computational cost of the HAR
algorithm depends on the cost of performing tensor op-
erations in Steps 2, 3 and 4. Assume that there are
O(N) nonzero entries in H, A and R, the cost of these
tensor calculations are of O(N) arithmetic operations.

5 Theoretical Analysis

In this section, we show existence and uniqueness of lim-
iting probability distributions x̄, ȳ and z̄ so that it can
be used in computing hub and authority scores for ob-
jects and relevance scores for relations very effectively.
Based on these results, the convergence of HAR algo-
rithm can be shown.

We let Ωm = {u = (u1, u2, · · · , um) ∈ Rm|ui ≥
0, 1 ≤ i ≤ m,

∑m
i=1 ui = 1} and Ωn = {w =

(w1, w2, · · · , wn) ∈ Rn|wj ≥ 0, 1 ≤ j ≤ n,
∑n

j=1 wj =
1}. We also set

Ω = {[x,y, z] ∈ R2m+n|x ∈ Ωm,y ∈ Ωm, z ∈ Ωn}.

We note that Ωm, Ωn and Ω are closed convex sets. We
call u to be positive (denoted by u > 0) if all its entries
of ui are positive.

It is easy to check that if x, y and z are probability
distributions, then the output Hyz, Axz and Rxy are
also probability distributions (the correctness of Steps
2, 3 and 4 in Algorithm 1).
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Theorem 5.1. Suppose H, A and R are constructed
in Section 3, 0 ≤ α, β, γ < 1, and o ∈ Ωm and
r ∈ Ωn are given. For any x,y ∈ Ωm and z ∈ Ωn,
then (1 − α)Hyz + αo, (1 − α)Axz + αo ∈ Ωm and
(1− β)Rxy + βr ∈ Ωn.

By using Theorem 5.1, we show the existence of
positive solutions for the set of tensor equations in
(4.12).

Theorem 5.2. Suppose H, A and R are constructed in
Section 3, 0 ≤ α, β, γ < 1, and o ∈ Ωm and r ∈ Ωn

are given. If T is irreducible, then there exist x̄ > 0,
ȳ > 0 and z̄ > 0 such that (1 − α)Hȳz̄ + αo = x̄,
(1 − β)Ax̄z̄ + βo = ȳ, and (1 − γ)Rx̄ȳ + γr = z̄, with
x̄, ȳ ∈ Ωm and z̄ ∈ Ωn.

Proof. The problem can be reduced to a fixed point
problem as follows. We define the following mapping
T : Ω → Ω as follows

T ([x,y, z]) = [(1− α)Hyz + αo,

(1− β)Axz + βo,

(1− γ)Rxy + γr].

It is clear that T is well-defined (i.e., when [x,y, z] ∈ Ω,
T ([x,y, z]) ∈ Ω) and continuous. According to the
Brouwer Fixed Point Theorem, there exists [x̄, ȳ, z̄] ∈ Ω
such that T ([x̄, ȳ, z̄]) = [x̄, ȳ, z̄], i.e., (1−α)Hȳz̄+αo =
x̄, (1− β)Ax̄z̄ + βo = ȳ, and (1− γ)Rx̄ȳ + γr = z̄.

Now suppose x̄, ȳ and z̄ are not positive, i.e., there
exist some entries of x̄, ȳ and z̄ are zero. Let I1 =
{i1|x̄i1 = 0}, I2 = {i2|ȳi2 = 0} and J1 = {j1|z̄j1 = 0}.
Again I1 and I2 are proper subsets of {1, 2, · · · ,m} and
J is a proper subset of {1, 2, · · · , n}. Let

δ = min{min{x̄i1 |i1 /∈ I1},
min{ȳi2 |i2 /∈ I2},

min{z̄j1 |j1 /∈ J1}}.
We must have δ > 0.

We first note that

(1−α)
m∑

i2=1

n∑

j1=1

hi1,i2,j1 ȳi2 z̄j1+αoi1 = x̄i1 = 0, ∀i1 ∈ I1.

Let us consider the following quantity:

(1− α)δ2
∑

i2 /∈I2

∑

j1 /∈J1

hi1,i2,j1

≤ (1− α)
∑

i2 /∈I2

∑

j1 /∈J1

hi1,i2,j1 ȳi2 z̄j1

≤ (1− α)
m∑

i2=1

n∑

j1=1

hi1,i2,j1 ȳi2 z̄j1 + αoi1 = 0,∀i1 ∈ I1.

Hence we have hi1,i2,j1 = 0 for all i1 ∈ I1 and for
all i2 /∈ I2 for any fixed j1 /∈ J1. Thus (hi1,i2,j1)
(j1 /∈ J1) is a reducible matrix, and it implies that
H is reducible. By using the similar argument and
considering the other two equations (1− β)Ax̄z̄+ βo =
ȳ, and (1− γ)Rx̄ȳ + γr = z̄, we can find that A and R
are also reducible. According to these results, we obtain
a contradiction. Hence x̄, ȳ and z̄ must be positive.

In [10], it has been given a general condition which
guarantees the uniqueness of the fixed point in the
Brouwer Fixed Point Theorem, namely, (i) 1 is not an
eigenvalue of the Jacobian matrix of the mapping, and
(ii) for each point in the boundary of the domain of the
mapping, it is not a fixed point. In our case, we have
shown in Theorem 5.2 that all the fixed points of T are
positive when H, A and R are irreducible, i.e., they do
not lie on the boundary ∂Ω of Ω.

Theorem 5.3. Suppose T is irreducible, H, A and R
constructed in Section 3, 0 ≤ α, β, γ < 1 and o ∈ Ωm

and r ∈ Ωn are given. If 1 is not the eigenvalue of the
Jacobian matrix of T , then the solution vectors x̄, ȳ and
z̄ in Theorem 5.2 are unique.

According to Theorem 5.3, if xt = xt−1, yt = yt−1

and zt = zt−1, in the HAR algorithm, then we obtain
the unique solution vectors x̄, ȳ and z̄ for (1−α)Hȳz̄+
αo = x̄, (1−β)Ax̄z̄+βo = ȳ, and (1−γ)Rx̄ȳ+γr = z̄.
When xt 6= xt−1, yt 6= yt−1 and zt 6= zt−1, there
exist a subsequence [xts ,yts , zts ] converges to [x̄, ȳ, z̄] by
using the fact that Ω is a compact space in R2m+n. As
we have shown that the solution vectors are unique, it
implies that [xt,yt, zt] converges (up to a subsequence)
to [x̄, ȳ, z̄] which are the limiting probability vectors
giving the hub and authority scores of objects and the
relevance scores of relations respectively.

6 Experimental Results

In the section, we carry out two experiments to demon-
strate the usefulness and effectiveness of the proposed
method HAR. In the first experiment, we construct
multi-relational data by considering links of different
anchor texts among webpages from TREC Web data
set. In the second experiment, our multi-relational data
is constructed under the consideration of paper citations
of different categories from DBLP data set. Both exper-
iments concentrate on the query search tasks. For com-
parisons, we apply HITS, SALSA [15] and TOPHITS as
well.

6.1 Evaluation metrics In this paper, we employ
four evaluation metrics: the precision at position k
(P@k), the normalized discounted cumulative gain at
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position k (NDCG@k), the mean average precision
(MAP) and the R-precision (R-prec).

1. P@k: Given a particular query q, we compute the
precision at position k as follows:

P@k =
#{relevant documents in top k results}

k

Since we have a set of queries in both experiments,
we report the average P@k scores of these queries
as final results.

2. NDCG@k: In order to emphasize the high-ranking
relevant documents, the discounted cumulative
gain DCG@k is defined as a measure to evaluate
the effectiveness of search engine results. DCG@k
discounts the contribution of low-ranking relevant
documents and is calculated as

DCG@k =
k∑

i=1

2reli − 1
log2(1 + i)

where reli ∈ {0, 1} indicates whether the document
ranked number i is relevant to the query topic
or not. NDCG@k is a normalized version of this
measure:

NDCG@k =
DCG@k

IDCG@k

where IDCG@k refers to the ideal discounted cu-
mulative gain at position k, which is computed by
presenting an ideal ranking list. Similar to P@k, we
report the average NDCG@k scores of all queries as
final results.

3. MAP: Given a query, the average precision is
calculated by averaging the precision scores at each
position in the search results where a relevant
document is found. MAP is then the mean of the
average precision scores of all queries.

4. R-prec: Given a query, R-prec is the precision score
after R documents are retrieved, i.e., R-prec=P@R,
where R is the total number of relevant documents
for such query. Again, we report the mean of R-
prec scores of all queries as final results.

6.2 Experiment 1 In this experiment, we sample
100,000 webpages from .GOV Web collection in 2002
TREC. For query testing, we use the 50 topic distillation
topics in TREC 2003 Web track as queries1. We

1The query topics can be found in

http://trec.nist.gov/data/t12.web.html. We do not use the
testing collection in TREC 2002 is because Hawking and

Craswell point out that the testing collection in TREC 2002 is

not a good relevance judgement for the topic distillation task
[28].

preserve the webpages that are relevant to these query
topics (516 webpages in total) when we sample the
100,000 webpages. Then we consider the links among
them via different anchor texts. Given each anchor
text, we preprocess it by eliminating the stop words and
stemming. After that, we obtain 39,255 anchor terms
in total, and 479,122 links with these anchor terms
among the 100,000 webpages. We then use this data
to construct a tensor and test our approach for query
search task.

Tensor construction. We construct a tensor T
based on links of webpages (objects) through different
anchor temrs (relations). In this case, there are 100,000
objects and 39,255 relations. The tensor is constructed
as follows: If the i1th webpage links to the i2th webpage
via the j1th anchor term, we set the entry ti1,i2,j1 of T
to be one. By considering all the links between these
webpages, we construct the tensor T . The size of T
is 100, 000 × 100, 000 × 39, 255 and there are 479,122
nonzeros entries in T . The percentage of nonzero entries
is 1.22×10−7%. After constructing T , we construct the
transition probability tensors H, A and R. We note
that only the nonzero entries and their locations are
stored in the computational process. It is not necessary
to store values 1/m or 1/n for the dangling nodes in H,
A and R.

Query settings. For all the comparison algo-
rithms, we use the well-known BM25 model [20] to con-
figure their query settings. The BM25 score of a docu-
ment d with respect to a query q is computed by sum-
ming up the weight of those query terms that occur in
the document:

W (d, q) =
∑

t

wt ∗ qt

the weight of the term t is computed as

wt =
(k1 + 1) ∗ tft

k1((1− b) + b dl
avdl ) + tft

∗ log
N − dft + 0.5

dft + 0.5

where tft is the frequency that the term t occurs in
this document, dft is the number of documents that
contain the term t, dl is the length of this document,
avdl is the average length of documents, N is the total
number of documents in the collection, k1 and b are two
parameters. We use k1 = 2.1 and b = 0.6. Here we list
several algorithms for comparison.

• For HITS and SALSA, we aggregate the multi-
relational data into a simple graph, and then
compute the BM25 scores of anchor terms with
respect to the query topic and select 50 webpages
that have the highest BM25 scores as a root set.
Then we expand the root set based on aggregated
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graph to construct a subgraph for computing the
hub and authority scores.

• For TOPHITS, we perform it on the tensor T and
try the best 500-rank, 1000-rank and 1500-rank
approximations respectively. The query vector is
constructed by computing the BM25 score for each
anchor term(i.e., relation) with respect to the query
topic. Then the hub and authority scores are
computed as in [12].

• In [29], Wu et al. combine the evidence from
anchor terms and query-dependent link connec-
tions to handle topic distillation tasks, and show
that this method produces state-of-the-art results.
Therefore, we compare with this method as well.
In this method, a weighted linear model is used
to combine the BM25 scores of anchor terms with
query-dependent indegree and out degree informa-
tion. We refer to this method as BM25+DepInOut.
We use the default weights reported in [29], i.e., the
value 0.2 for the BM25 score, the value 0.1 for the
dependent indegree information and the value 0.7
for the dependent outdegree information.

• For HAR, we use two query settings, i.e., query
with relations only, and query with both relations
and objects together. For query with relations,
we set the entries of r to be the BM25 scores
between the corresponding anchor terms and the
query topic, and then normalize it. In this case,
the parameters α, β and γ are set to be 0, 0 and
0.9 respectively. For query with both relations and
objects, in addition to the construction of r, we
set the entries of o to be the BM25 scores between
the content of the corresponding webpages and the
query topic, and then normalize it. In this case, we
set the parameters α, β and γ to be 0.5, 0.5 and
0.9 respectively. We set the stopping criterion ε to
be 10−7 which is small enough for convergence.

Results and comparisons. Table 1 shows results
of all the comparison algorithms. The results show that
our proposed HAR outperforms the other algorithms
significantly. We see that the results of HITS, SALSA
and TOPHITS are not very good. For HITS and
SALSA, this is because they can not differentiate multi-
relations and they suffer from topic drift problems
when constructing the subgraph from the aggregated
graph to compute hub and authority scores. For
TOPHITS, this is because it employs the decomposition
results of the adjacency tensor T to compute hub
and authority. However, the decomposition vectors
suffer from two constraints: one is they are usually
not unique and the other is negative entries may exist
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Figure 2: The parameter tuning test (a) tuning γ with
α = β = 0; (b) tuning α and β with γ = 0.9. For
clearness, we do not show the curves evaluated with
P@5, P@20, NDCG@5 and NDCG@20.

in these vectors. These two constraints may lead to
non-unique or negative hub and authority scores for
a particular query, which is unreasonable and hard
to interpret. Different from TOPHITS, our method
HAR employs the limiting probabilities to compute the
hub and authority scores, which are unique and non-
negative. Therefore it yields much better results than
TOPHITS. Moreover, we see that HAR has slightly
better performance than BM25+DepInOut when we
query with relations only. When we consider query with
both relations and objects, HAR has significant better
performance than BM25+DepInOut. This is because
it exploits all the useful information by combining
the webpage content, the anchor terms and the link
structure in a natural way.
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P@5 P@10 P@20 NDCG@5 NDCG@10 NDCG@20 MAP R-prec

HITS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0041 0.0000

SALSA 0.0000 0.0160 0.0140 0.0000 0.0157 0.0203 0.0114 0.0084

TOPHITS (500-rank) 0.0040 0.0020 0.0010 0.0068 0.0044 0.0028 0.0008 0.0002
TOPHITS (1000-rank) 0.0080 0.0040 0.0020 0.0136 0.0088 0.0057 0.0016 0.0010

TOPHITS (1500-rank) 0.0080 0.0040 0.0030 0.0097 0.0063 0.0049 0.0011 0.0018

BM25+DepInOut 0.0400 0.0280 0.0180 0.0424 0.0419 0.0479 0.0370 0.0370

HAR (rel. query) 0.0480 0.0560 0.0410 0.0507 0.0659 0.0747 0.0330 0.0552
HAR (rel. and obj. query) 0.1360 0.1100 0.0800 0.1398 0.1545 0.1765 0.1035 0.1051

Table 1: The results of all comparison algorithms on TREC data set.

Parameters tuning study. Next we show how
the performance changes with respect to the values
of parameters α, β and γ. Figure 2(a) shows how
the performance of HAR change when we tune the
parameter γ. In this case, we consider query with
relations only and set α = β = 0. We see from this
figure that the performance is increasing as we increase
the value of γ, and it tends to be stable after γ = 0.9.
Therefore we set γ to be 0.9 in all the experiments when
we query with relations only. Figure 2(b) shows how
the performance of HAR changes against the values of
α and β. In this case, we consider query with both
relations and objects. For simplicity, we set α and β to
be equal, and then tune them. We see from this figure
that the performance first increases then decreases when
the values of α and β are increased. Therefore we set α
and β to be 0.5 in all the experiments when we query
with both relations and objects.

6.3 Experiment 2 In this experiment, we construct
the multi-relational data with a data set crawled from
DBLP. We crawled publication information of five con-
ferences (SIGKDD, WWW, SIGIR, SIGMOD, CIKM)
from DBLP2. Their publication periods are as fol-
lows: SIGKDD (1999-2010), WWW (2001-2010), SI-
GIR (2000-2010), SIGMOD (2000-2010) and CIKM
(2000 and 2002-2009)3. Publication information in-
cludes title, authors, reference list, and classification
categories associated with this publication4. There are
in total 6848 publications, 10305 authors and 617 differ-
ent categories in the data set. For query search task, we
select 100 category concepts as query inputs to retrieve

2http://www.informatik.uni-trier.de/ ley/db/
3Missing information for CIKM 2001 is due to fact that DBLP

does not provide links to ACM Digital Library.
4For each publication, there are several strings indicating the

classification categories of this publication, where each string

provides the information from the most general concept to the

most specific concept. For example, a string may be “H.
information systems— H.3 information storage and retrieval—

H.3.3 information search and retrieval”. For each string, we

choose the most specific concept as the classification category it
indicates for the publication.

the relevant publications.
Tensor construction. We construct a tensor T

based on citations of publications (objects) through
different category concepts (relations). In this case
there are 6848 objects and 617 relations. The tensor
is constructed as follows: If the i1th publication cites
the i2th publication and the i2th publication has the
j1th category concept, then we set the entry ti1,i2,j1 of
T to be one, otherwise we set the entry ti1,i2,j1 to be
zero. By considering all the publications, ti1,i2,j1 refers
to the citation information from the i1th publication
to the i2th publication via different category concept.
The size of the tensor T is 6848 × 6848 × 617 and
there are 24901 nonzero entries. The percentage of the
nonzero entries is 8.61×10−5%. After that, we generate
transition probability tensors H, A and R. Again, it is
not necessary to store values 1/m or 1/n for dangling
nodes in H, A and R.

Query settings. Given the multi-relational data
and 100 query concepts, we compare the performance
of HITS, SALSA, TOPHITS and HAR. Since the query
concept can exactly match the relations, we do not
need to use BM25 function to compute the similarities
between relations and the query concept.

For HITS and SALSA, we aggregate the multi-
relational data as in experiment 1, and then select
50 publications that have the highest citations via the
query concept as root set. Then we expand the root set
based on the aggregated graph to construct a subgraph
for computing hub and authority scores. For TOPHITS,
we use 50-rank, 100-rank and 150-rank approximations
respectively. The query vector is constructed by setting
the entry that corresponds to the query concept to be
one. For BM25+DepInOut, we use the same setting as
in experiment 1. For HAR, we construct vector r by
setting the entry that corresponds to the query concept
to be one, and use parameters α = β = 0, γ = 0.9. We
set the stopping criterion ε to be 10−7 which is small
enough for convergence.

Results and comparisons. Table 2 shows the
results of HITS, SALSA, TOPHITS, BM25+DepInOut
and our proposed HAR. Again, we see from this table
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P@5 P@10 P@20 NDCG@5 NDCG@10 NDCG@20 MAP R-prec

HITS 0.2920 0.2260 0.1815 0.4122 0.3789 0.3792 0.2522 0.2751
SALSA 0.5240 0.4100 0.3105 0.6157 0.5606 0.5352 0.3462 0.3929

TOPHITS (50-rank) 0.1700 0.1360 0.1145 0.1958 0.1684 0.1557 0.0566 0.0617

TOPHITS (100-rank) 0.2080 0.1640 0.1340 0.2345 0.2012 0.1857 0.0646 0.0732

TOPHITS (150-rank) 0.2400 0.1920 0.1410 0.2649 0.2315 0.1998 0.0732 0.0765

BM25+DepInOut 0.0140 0.0170 0.0145 0.0118 0.0147 0.0138 0.0162 0.0109

HAR (rel. query) 0.7280 0.5880 0.4155 0.8113 0.7472 0.6760 0.4731 0.4683

Table 2: The results of all comparison algorithms on DBLP data set.

P@5 P@10 P@20 NDCG@5 NDCG@10 NDCG@20 MAP R-prec

HAR (rel. query) 0.2000 0.2000 0.2000 0.1312 0.1488 0.1647 0.1312 0.2075

HAR (rel. and obj. query) 0.8000 0.6000 0.7500 0.8688 0.6995 0.7697 0.5422 0.6226

Table 3: The results of HAR with two settings when we query “clustering” concept and “document” related
papers. In this case, we judge a paper to be relevant if it has “clustering” concept and a “document” related title
for evaluation.

HAR α = β = 0, γ = 0.9, query by “clustering” concept only
publication titles target target

concept title
Agglomerative clustering of a search engine query log. 1 0

Information-theoretic co-clustering. 1 0
Clustering user queries of a search engine. 1 0

Random walks on the click graph. 1 0
Co-clustering documents and words using bipartite spectral graph partitioning. 1 1

Learning to cluster web search results. 1 0
Discovering evolutionary theme patterns from text: an exploration of temporal text mining. 1 0

Efficient clustering of high-dimensional data sets with application to reference matching. 1 0
Corpus structure language models and ad hoc information retrieval. 1 0
Document clustering based on non-negative matrix factorization. 1 1

An optimal and progressive algorithm for skyline queries. 1 0
Efficient similarity search and classification via rank aggregation. 1 0

Eliminating noisy information in web pages for data mining. 1 0
Fast and effective text mining using linear-time document clustering. 1 1

Evaluating strategies for similarity search on the web. 1 0
Using web structure for classifying and describing web pages. 1 0
Entropy-based subspace clustering for mining numerical data. 1 0

Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. 1 0
Clustering by pattern similarity in large data sets. 1 0

Evaluation of hierarchical clustering algorithms for document datasets. 1 1

HAR α = β = 0.5, γ = 0.9, query by “clustering” concept and also input the vector o
publication titles target target

concept title
Document clustering based on non-negative matrix factorization. 1 1

Evaluation of hierarchical clustering algorithms for document datasets. 1 1
Co-clustering documents and words using bipartite spectral graph partitioning. 1 1

Fast and effective text mining using linear-time document clustering. 1 1
Corpus structure language models and ad hoc information retrieval. 1 0

Information-theoretic co-clustering. 1 0
Regularizing ad hoc retrieval scores. 1 0

Document clustering using word clusters via the information bottleneck method. 1 1
Document clustering with cluster refinement and model selection capabilities. 1 1

Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. 1 0
As we may perceive: finding the boundaries of compound documents on the web. 1 1

An information-theoretic measure for document similarity. 1 1
A hierarchical monothetic document clustering algorithm for summarization and browsing search results. 1 1

On the merits of building categorization systems by supervised clustering. 1 0
A neighborhood-based approach for clustering of linked document collections. 1 1

Detecting similar documents using salient terms. 1 1
Document clustering with committees. 1 1

Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization. 1 1
Evolutionary document summarization for disaster management. 1 1

A matrix density based algorithm to hierarchically co-cluster documents and words. 1 1

Table 4: The top twenty results when querying by “clustering” concept and “document” related objects. The
publications, appearing commonly in top twenty lists of two HAR results, are indicated with blue color. The target
concept column shows whether the corresponding publication has the query concept according to its classification
categories. The target title column shows whether the corresponding publication has a “document” related title.
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that the performance of HAR is much better than those
of the other comparison algorithms.

In addition, we would like to show that the proposed
method HAR can incorporate additional information
to achieve different query purposes. For example,
when we query “clustering” concept and “document”
related papers, it may be difficult to set query input
vectors for relations to express such concepts since there
are no category concept labeled as “document”. In
this case, we construct the object vector o by setting
the entries that correspond to the papers whose titles
contain the word “document” to be ones and then
normalizing it. After that, we apply the HAR algorithm
by using “clustering” as relation query input and the
object vector o in the search. Table 4 shows the top
twenty papers when we apply HAR with two query
settings. Table 3 shows the evaluation of these two
results. We see that the results by using both relations
and objects as input are more accurate than those by
using “clustering” concept as input only.

In summary, the experimental results have shown
that our proposed method HAR has better performance
than HITS, SALSA and TOPHITS. It is shown that
HAR is flexible to incorporate additional information in
query search process. Theoretically, our approach has
two advantages compared with TOPHITS: (i) HAR re-
sults in the unique limiting probability distributions of
authorities, hubs and relevance scores, while TOPHITS
employs tensor factorization results which may not be
optimal; (ii) HAR is easier to interpret query results
because the resulting limiting probabilities are all posi-
tive but tensor factorization may result in vectors with
negative entries, which are hard to interpret.

7 Concluding Remarks

In this paper, we have proposed a framework HAR
to determine hub and authority scores of objects and
relevance scores of relations in multi-relational data
for query search. Both experimental and theoretical
results have shown the effectiveness of the proposed
method. We have also demonstrated how to accomplish
various query objectives using different settings of the
proposed method. In the comparison, we find that
the performance of HAR is better than those of HITS,
SALSA and TOPHITS. We believe that our framework
would be very useful in information retrieval tasks in
practice. Here we point out several possible future
research directions based on the proposed framework.

1. In our framework, we assume probability distribu-
tions satisfying (4.4), (4.5) and (4.6) to set up the
tensor equations for hub, authority and relevance
scores. It is interesting to study other forms of

equations for this objective.

2. We set values for weighting parameters α, β and
γ empirically in this paper. In order to make use
the HAR algorithm more practically and effectively,
these parameters can be learned via training data
sets.

3. We consider in this paper the multi-relational data
are represented as a (2, 1)th order rectangular ten-
sor. However, our framework is a general paradigm
and it can be further extended to consider data with
higher order tensors for potential applications. For
example, we can consider the query search problem
in semantic web using a (1, 1, 1, 1)th order rectan-
gular tensor to represent subject, object, predicate
and context relationship as in [7]. By constructing
four transition probability tensors S, O, P and R
for subject, object, predicate and context relation-
ship respectively. Based on the proposed frame-
work, we expect to solve the following set of tensor
equations:

Sopr = s, Ospr = o, Psor = p, Rsop = r.

In the HAR algorithm, we compute st =
Sot−1pt−1rt−1, ot = Ostpt−1rt−1, pt =
Pstotrt−1, rt = Rstotpt in the iterations. Simi-
larly, assigned probability vectors can be incorpo-
rated into the above tensor equations for query in-
put. By using the mathematical analysis in Sec-
tion 5, we obtain the four limiting probability dis-
tributions corresponding to subject, object, predi-
cate and context relationship for scoring vectors in
query search.
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